CS 4530: Fundamentals of Software Engineering

Module 11: What makes a good test suite?

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning ODbjectives for this Lesson

* By the end of this lesson, you should be able to:

* Explain what makes a good test, and give examples and
counter examples

* Explain different things a test suite might accomplish, and
sketch how one might judge how well a test suite
accomplishes those goals

What makes for a good test (suite)?

* Desirable properties of test suites:
* Find bugs
* Run automatically
* Are relatively cheap to run
* Desirable properties of individual tests:
* Understandable and debuggable

‘") Related Terminology:
* No false alarms (not “flaky”) “test smells”

Good Tests are Hermetic

* Contain all information necessary to set up,
execute, and tear down environment

* Leaves no trace of its execution
* Important to reduce flakiness - test failures

describe('Create student', () => {
it('should return an ID', async () => {
const createdStudent = await client.addStudent('Avery');

expect (createdStudent.studentlID) .toBeGreaterThan (4) ;

b) s
})

This test is not hermetic: assumes starting ID of 4, leaves an extra Avery in the application

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O'Reilly)

Good Tests Aren't Flaky

* Flaky test failures are false alarms

* Tests that are hermetic defend against
“test order dependency” - failures due
to tests running in specific order

* Most common cause of flaky test
failures: “async wait” - tests that expect
some asynchronous action to occur
within a timeout

* Good tests avoid relying on timing

Floating Point
3%

Time

4%
Network
9%

Resource Leak
10%

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]
5

Good Tests Aren’t Brittle

* Brittle tests make invalid assumptions about the
specification

* Specifications often leave room for undefined
behaviors: details that are subject to change

* Brittle tests will fail unexpectedly if that undefined
behavior changes

 Example: Asserting that a specific error message is
thrown (IP1)

1t ('Throws an error 1f there 1s no layer called "objects"', async () => {
expect(() => town.initializeFromMap (testingMaps.noObjects))
.toThrowError ('There 1s no layer called "objects"');

}) s

Unless the specification states that this is the error message that should be thrown, this test is brittle

Good Tests are Clear

e Test failures indicate:

* There is a bug in the system under test,

and/or
* Thereis a bug in the test

* Clear tests help engineers diagnose the

actual problem

it(“‘remove only removes one’, () =>{

const tree = makeBST();

for (let i = 0; i < 1000; ++i) {
tree.add(i);

}

for (let j = 0; j < 1000; ++j) {
for (let 1 = 0; 1 < 1000; ++i) {
if (1 != j) tree.remove(i);
}
expect(tree.contains(j)).
toBe(true);

This test is not clear: if it fails, why?

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O'Reilly) 7

Good Tests Invoke Public APIs Only

* Tests should only invoke public methods of SUT (system
under test)

e Interact with SUT as a client of the SUT would:
 Public methods within classes
* Exported members of modules

public i1nitializeFromMap (map: ITiledMap) {

this. validateInteractables();

}

private validatelInteractables()
// Test Me!

}

It might be tempting to make _validatelnteractables public and
test it directly: but it’s not how clients would call it!

“‘Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O'Reilly) 8

What makes a Test Suite good?

* Depends on the goal of the test suite.

* Test Driven Development

* Does the SUT satisfy its specification? (“functional testing”)
e “Good” test suite exercises and validates the entire specification

* Regression Test

* Did something change since some previous version?
* Prevent bugs from (re-)entering during maintenance.
e “Good” test suite detects bugs that we introduce in code (“structural testing”)

* Acceptance Test

* Does the SUT satisfy the customer (“requirement testing”)
* “Good” test suite answers: Are we building the right system ?

Does the SUT satisfy its specification?

* Test behavior without regard to the implementation
(“black-box testing” or “functional testing”).

) , P
What’s a specification?: Not often seev in +he wild

* A precise definition of all acceptable behaviors of a SUT
(outputs, state mutation, other effects) in all situations (state
and inputs)

* A specification may be formal (mathematical), informal (natural
language) or implicit (“I know it when | see it”).

* Atest suiteis an approximation to an unwritten
specification
* That’s the “T” in TDD

* Adequacy of test suite is likelihood that an implementation
passing all the tests actually fulfills the (unwritten) specification.

10

Building Test Suites From Specifications (TDD)

* Enumerate equivalence classes of inputs to
the SUT, and the expected behavior of that
class

* |dentify boundary cases (near misses
between input classes)

* Evaluate the adequacy of the test suite by
comparing the tested behaviors with the
specified behaviors

* Sometimes referred to as “black box” testing

S

If the program works for input A, it will probably work for input B

11

Building Test Suites From Specifications: Zip
Code Lookup

* USPS ZIP code lookup tool accepts a zip code
as input, and outputs:

UNMITED STATES
Pad POSTAL SERVICE.

* The “place names” that correspond to that
Z|IP code, or

* “Invalid zip code”

Find a list of citles that are in a ZIP Code.

* Strategy:

* Required Fields

* Determine the input equivalence classes, - ZIP Code | 12345
boundary conditions

* Write tests for those inputs Submit >

12

Building Test Suites From Specifications: Zip
Code Lookup

* USPS ZIP code lookup tool accepts a zip code
as input, and outputs:

UNITED STATES
POSTAL SERVICE.

* The “place names” that correspond to that

| ZIP Code Lookup
/|IP code, or A0

° III nva“d le COdeH A” pOSSib'E inputs Search By Address 3% Search By City 20

Find a list of citles that are in a ZIP Code.

All 5 digit numbers

* Required Fields

Valid ZIP codes *ZIP Code | 12345

Submit >

13

Building Test Suites From Specifications: Zip
Code Lookup

* Equivalence classes:
e Nota 5 digit number All possible inputs
* A5 digit numbers

* Avalid ZIP code
* With one place name

All 5 digit numbers

Valid ZIP codes

* With multiple place names
* Not a valid ZIP code

* Generate at least one input from each class, plus
boundaries (e.g. 4 digit numbers, 6 digit numbers, no
numbers)

* Encode the expected output of the system for each test

14

Make sure the regions have the right
boundaries.

III

* Select “special” values of a range
* Boundary values;
* Barely legal, barely illegal inputs;
=> boundary testing

* Integer overflow a serious problem:
may be implicit

* ComAir problem due to a list
getting more than 32767 elems

* https://arstechnica.com/uncategor;
zed/2004/12/4490-2/

15

https://arstechnica.com/uncategorized/2004/12/4490-2/

Building Tests from Specifications
(TDD)

* When delivering a feature, it is important to All possible inputs
deliver tests to ensure that the feature keeps
working this way in the future

All 5 digit numbers

* You may have specific domain knowledge that valid ZIF codes

future developers who touch the code do not

* Specifications are hard to interpret and check,
automated tests are easy (consider individual
project...)

* Beyonce rule: “If you liked it you should have
put a FHrg test on it” (SoftEng @ Google)

16

Building Test Suites for Code ("Whitebox”

Testing)

* Examine the code of the system
under test

* Enumerate all public methods and
observable behaviors

e Write tests that execute those
methods and check those
behaviors

* A “good” test suite executes and
checks all of the possible
behaviors of our code

function getPlaceNames (1nput: string): string[] {
Ery
1f (input.length == 5) {

const parsed = parselnt(input);
1f (isValidZipcode (parsed)) {

const primaryPlaceName = getPrimaryPlaceName (parsed) ;
1f (hasOtherPlaceNames (parsed)) {
return

[primaryPlaceName] .concat (otherPlaceNames (parsed))

J
return [primaryPlaceName];
J
J

throw new Error("Invalid zip code")
}catch (err) {
throw new Error("Invalid zip code")

J

17

Do our tests execute all of the code?

* |dea: Quantitative measure the portion of code executed
by test suite. Write new test inputs to execute more code.

* This is the question of test coverage, examples:
e Statement or Block coverage
* Branch coverage
* Path coverage

* If some (statement/branch/path) is not covered, it is
definitely not tested

* If some (statement/branch path) is covered, it might be
tested

18

Statement Coverage

* Each line (or part of) the code should be executed at
least once in the test suite

* There are good tools for measuring how many lines
were executed or not executed

* Jest -- coverage

* Adequacy criterion: each statement must be executed at
least once

Coverage: # executed statements
statements

19

int cgi_decode(char *encoded, char *decoded)

{ char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

while (*eptr) {

~
char c;
c = *eptr;
if (c =="+"){
True
int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low ==-1) {)
Coverage — —
clse | G ’
*dptr = 16 * digit_high + digit_lowys [
\ J |
_/
r ++dptr;
++eptr; ~

*dptr ="'\0"; [

return ok

J

int cgi_decode(char *encoded, char *decoded)

{ char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

~
char c;
c = *eptr;
if (c =="+"){
True
int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low ==-1) {)
Coverage — —
clse | G ’
*dptr = 16 * digit_high + digit_lowys [
_/
r ++dptr;
++eptr; ~

*dptr ="'\0"; [

return ok

J

int

Coverage

{ char *eptr = encoded;
char *dptr = decoded;

ok =0;

char c;
c = *eptr;
if (c =="+"){

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

}

- *dptr ="\0";

return ok

J

{ char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c =="+"){

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

Coverage

}

- *dptr ="\0";

return ok

J

Branch Coverage

* Adequacy criterion: each branch in the CFG must be
executed at least once

coverage: # executed branches
branches

* Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

* Most widely used criterion in industry

24

Branch Coverage Measures

* Coverage is computed automatically while the tests

execute

* jest --coverage
* Does it all for you

calculator/add

v should return a number when parameters
v should return sum of *2°

calculator/subtract

v should return a number when parameters

when

v should return sum of "1 when

4 passing (4ms)

All files
Add. ts
Subtract.ts

are passed to “add()’

1 + 1 is passed to “add()’

are passed to “subtract()’

2 — 1 is passed to ‘subtract()’

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

Every Branch Executed != Every Behavior

Executed

* In this example, all branches are
covered by the test

* However: magic will crash under
certain inputs

function magic (x: number) {

let z = 0;

1f (x !'== 0) {
z = x + 10;

} else {T2
z = 0;

}

if (y > 0) | IIITl
return v / z;

} else | T2
return x;

J
J

test (“"100% branch coverage", () => {
expect (magic (1, 22)).toBe(2); //T1
expect (magic (0, -10)).toBe(0); //T2
b) s

number, V:

M

26

Path Coverage is Exhaustive

* Sometimes a fault is only
manifest on a particular path

* E.g., choosing the left branch and

then choosing the right branch.
(dashed blue path)

* But the number of paths can be
infinite
* E.g., if thereis a loop.

* There are ways to bound the
number of paths to cover.

27

100% Coverage may be Impossible

* Path coverage (even without loops)
* Dependent conditions: if (x) A; B; if (x) C;

* Branch coverage
* Dead Branches e.g., if (x <0) A; else if (x == 0) B; else if (x > 0) C;
* (x> 0) test will always succeed

* Statement coverage
* Dead code (e.g., defensive programming)

23

Pareto’s Law

Approximately 80% of defects

come from 20% of modules

Good Tests have Strong Oracles

* Test oracle defines criteria for when test should fail

* Strong oracles check all observable behaviors and
side-effects

* How to determine an oracle?
* Function returns the exact “right” answer
* Function returns an acceptable answer
* Returns the same value as last time
* Function returns without crashing
* Function crashes (as expected)

30

How to evaluate the strength of test oracles?

* Goal: “A good test suite finds all of the bugs”

* Problem: How to know the bugs that we could
make?

e Strawman - “Seeded Faults”:

* Create N variations of the codebase, each with a
single manually-written defect

* Evaluate the number of defects detected by test
suite

* Test suite is “good” if it finds all of the bugs you can
think of

31

Mutation Analysis tests the Tests

* |dea: What if many (real) bugs could be represented by a single, one-
line “mutation” to the program?

public contains(location: PlayerLocation): boolean {
return (
location.x + PLAYER SPRITE WIDTH / 2 > this._x &&
location.x - PLAYER SPRITE WIDTH / 2 < this. x + this. width &
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this. y + this. height
) ;
}
Correct code for ‘Contains” in IP1
public contains(location: PlayerLocation): boolean {
return (
location.x + PLAYER SPRITE WIDTH / 2his._x & &
location.x - PLAYER SPRITE WIDTH / 2 % this. x + this. width &s
location.y + PLAYER SPRITE HEIGHT / 2 > this. y &&
location.y - PLAYER SPRITE HEIGHT / 2 < this._y + this._height
) 7
}

Mutated (and buggy) code for ‘Contains” in IP1

Mutation Analysis tests the Tests

 Automatically mutates SUT to create mutants, each a single change to
the code

* Runs each test on each mutant, until finding that a mutant is detected
by a test

* Can be a time-consuming process to run, but fully automated
e State-of-the-art mutation analysis tools:

* Pit (JVM)

» Stryker (JS/TS, C#, Scala)

33

Mutation Report Shows Undetected Mutants

* Mutants “detected” are bugs that are found

 Mutants “undetected” might be bugs, or could be
equivalent to original program (requires a human to
tell)

C) % O
e LA SO @
O & @ 00“ A o 0&9
- R R\2 06 & e g O o
.\\\0‘5‘ S @ 0P & @ N\ W 4
File / Directory i Mutation score »g‘l“ %2 g{‘\ ,@\‘ g\g 2 & %O < <O" <0"
mm Allfiles 90.30 121 13 0 0 0 0 0 121 13 134
1s ConversationArea.ts 76.92% 10 3 o) 0 0) o) 0 10 3 13
1s InteractableArea.ts 97.01 65 2 0 0 0 0 0 65 2 67
1s Town.ts 85.00 34 6 0 0 0 0 0 34 6 40
s ViewingArea.ts 85.71 12 2 0 0 0 0 0 12 2 14

pubLic overlaps(otherinteractable: lnteractableAred): boolean {@
const toRectPoints = ({ _x, _y, _width, _height }: InteractableArea) => ({ x1: _x - PLAYER_SPRI
const rectl = toRectPoints(this);
const rect2 = toRectPoints(otherInteractable);
const noOverlap = rectl.xl >= rectZ2.xX20 000000000
|l rect2.x1 >=ml >= rect2.y2 || rect2.yl >= rectl.y2;0 00000000

return !'noOverlap; @

-~

Use Mutation Analysis While Writing Tests

* When you feel “done” writing tests, run a mutation
analysis

* Inspect undetected mutants, and try to strengthen
tests to detect those mutants

¥ Survived (2)
154 T/
133 public overlaps(otherInteractable: InteractableArea): boolean {
134 const toRectPoints = ({ _x, _y, _width, _height }: InteractableArea) => ({ x1: _x
135 const rectl = toRectPoints(this);
136 const rectZ2 = toRectPoints(otherInteractable);
137 - const noOverlap = rectl.xl >= rect2.x2e
-+ const noOverlap = rectl.xl > rect2.x2
138 |l rect2.x1 >= rectl.x2 || rectl.yl >= rect2.y2 || rect2.yl >= rectl.y2; e
139 return !'noOverlap; T
140 }
141

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs

205
266
267
268
269

270
271
272

public initializeFromMap(map: ITiledMap) {
const objectLayer = map.layers.find(eachLayer => eachLayer.nam
1f (lobjectLayer) {@®

[T alal Val VoLV o IV LV VLV VLV oIV LVl

throw new Error({Unable to find objects layer in map '); @

(VLW ALV oLV LV oV LV oLV LV LV LV oV oLV oLV oLV oLV oLV oV oLV oLV RV LV oLV LV oLV oLV ARV LV oLV LV oLV LV RV LV oIV LV oLV LV RV oLV oLV LV L LV LW oLV oLV LV LV oLV oV oLV oLV RV LV LV LV oV oLV)

¥

if (lobjectLayer) {}

const viewingAreas = objectlLayer.objects
.filter(eachObject => eachObject.type === 'ViewingArea')
.map(eachViewingAreaObject => ViewingArea.fromMapObject(eac

* Unfortunately, we can not automatically tell if an
undetected mutant is a bug or not

This mutant is equivalent to the original program: Even without
this check for undefined, an error is still thrown when the
undefined layer is dereferenced on the following line

62
63
64
65

06
67
68
09

public static fromMapObject(mapObject: ITiledMapObject, broadca:
const { name, width, height } = mapObject;
if (!width |l 'height) {e

(VAL VLV LV VLV oLV oLV RV LV ALV LV oLV LV RV IV IV

throw new Error(Malformed viewing area ${name}); ®

[AREV ALV VLV LWLV LV LV VoLV ol VAtV LV LV VoLV oIV LV VLV VLV otV oLV LV LV ol oLV otV LV LV oLV oV

throw new Error(*);

}

const rect: BoundingBox = { x: mapObject.x, y: mapObject.y,
return new ConversationArea({ id: name, occupantsByID: [] 1},

This mutant is equivalent to the original program: Even though
the error message changed, the specification doesn’t indicate
what error message should be thrown.

36

Mutants are a Valid Substitute for Real

Faults

* Do mutants really represent real bugs?

* Researchers have studied the question of
whether a test suite that finds more
mutants also finds more real faults

e Conclusion: For the 357 real faults studied,
Ves

* This work has been replicated in many other
contexts, including with real faults from
student code

Are Mutants a Valid Substitute
for Real Faults in Software Testing?

René Just', Darioush Jalalit, Laura Inozemtseva*, Michael D. Ernst®, Reid Holmes*, and Gordon Fraser?

fUniversity of Washington
 Seattle, WA, USA

{rjust, darioush, mernst}
@cs.washington.edu

ABSTRACT

A good test suite is one that detects real faults. Because the set
of faults in a program is usually unknowable, this definition is not
useful to practitioners who are creating test suites, nor to researchers
who are creating and evaluating tools that generate test suites. In
place of real faults, testing research often uses mutants, which are
artificial faults — each one a simple syntactic variation — that are
systematically seeded throughout the program under test. Mutation
analysis is appealing because large numbers of mutants can be
automatically-generated and used to compensate for low quantities
or the absence of known real faults.

Unfortunately, there is little experimental evidence to support
the use of mutants as a replacement for real faults. This paper in-
vestigates whether mutants are indeed a valid substitute for real
faults, i.e., whether a test suite’s ability to detect mutants is corre-
lated with its ability to detect real faults that developers have fixed.
Unlike prior studies, these investigations also explicitly consider the
conflating effects of code coverage on the mutant detection rate.

Our experiments used 357 real faults in 5 open-source applica-
tions that comprise a total of 321,000 lines of code. Furthermore,
our experiments used both developer-written and automatically-
generated test suites. The results show a statistically significant
correlation between mutant detection and real fault detection, inde-
pendently of code coverage. The results also give concrete sugges-
tions on how to improve mutation analysis and reveal some inherent
limitations.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation, Measurement

Keywords

Test effectiveness, real faults, mutation analysis, code coverage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@ acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...515.00
http://dx.doi.org/10.1145/2635868.2635929

*University of Waterloo

Waterloo, ON, Canada

{Iminozem, rtholmes}
@uwaterloo.ca

*University of Sheffield
Sheffield, UK
gordon.fraser@sheffield.ac.uk

1. INTRODUCTION

Both industrial software developers and software engineering re-
searchers are interested in measuring test suite effectiveness. While
developers want to know whether their test suites have a good chance
of detecting faults, researchers want to be able to compare differ-
ent testing or debugging techniques. Ideally, one would directly
measure the number of faults a test suite can detect in a program.
Unfortunately, the faults in a program are unknown a priori, so a
proxy measurement must be used instead.

A well-established proxy measurement for test suite effective-
ness in testing research is the mutation score, which measures a
test suite’s ability to distinguish a program under test, the origi-
nal version, from many small syntactic variations, called mutants.
Specifically, the mutation score is the percentage of mutants that
a test suite can distinguish from the original version. Mutants
are created by systematically injecting small artificial faults into
the program under test, using well-defined mutation operators.
Examples of such mutation operators are replacing arithmetic or
relational operators, modifying branch conditions, or deleting state-
ments (cf. [18]).

Mutation analysis is often used in software testing and debugging

research. More concretely, it is commonly used in the following use
cases (e.g., [3,13,18,19,35,37-39]):
Test suite evaluation The most common use of mutation analysis
is to evaluate and compare (generated) test suites. Generally, a test
suite that has a higher mutation score is assumed to detect more real
faults than a test suite that has a lower mutation score.

Test suite selection Suppose two unrelated test suites 7} and T,
exist that have the same mutation score and |T}| < |T,|. In the
context of test suite selection, 7; is a preferable test suite as it has
fewer tests than T, but the same mutation score.

Test suite minimization A mutation-based test suite minimiza-
tion approach reduces a test suite T to T \ {t} for every testr € T
for which removing ¢ does not decrease the mutation score of T'.

Test suite generation A mutation-based test generation (or aug-
mentation) approach aims at generating a test suite with a high mu-
tation score. In this context, a test generation approach augments a
test suite T with a test ¢ only if ¢ increases the mutation score of T'.

Fault localization A fault localization technique that precisely
identifies the root cause of an artificial fault, i.e., the mutated code
location, is assumed to also be effective for real faults.

These uses of mutation analysis rely on the assumption that mu-
tants are a valid substitute for real faults. Unfortunately, there is little
experimental evidence supporting this assumption, as discussed in
greater detail in Section 4. To the best of our knowledge, only three
previous studies have explored the relationship between mutants and

5/

Activity: strengthening a test suite

* Enhance the test suite of the transcript server to
improve line coverage and mutation coverage

* Download on Module 11 webpage

38

Review

* Now that you've studied this lesson, you should be

able to:
* Explain some properties of good tests.

* Explain different things a test suite might accomplish, and
sketch how one might judge how well a test suite
accomplishes those goals

	CS 4530: Fundamentals of Software Engineering��Module 11: What makes a good test suite?
	Learning Objectives for this Lesson
	What makes for a good test (suite)?
	Good Tests are Hermetic
	Good Tests Aren’t Flaky
	Good Tests Aren’t Brittle
	Good Tests are Clear
	Good Tests Invoke Public APIs Only
	What makes a Test Suite good?
	Does the SUT satisfy its specification?
	Building Test Suites From Specifications (TDD)
	Building Test Suites From Specifications: Zip Code Lookup
	Building Test Suites From Specifications: Zip Code Lookup
	Building Test Suites From Specifications: Zip Code Lookup
	Make sure the regions have the right boundaries.
	Building Tests from Specifications (TDD)
	Building Test Suites for Code (“Whitebox” Testing)
	Do our tests execute all of the code?
	Statement Coverage
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Branch Coverage
	Branch Coverage Measures
	Every Branch Executed != Every Behavior Executed
	Path Coverage is Exhaustive
	100% Coverage may be Impossible
	Pareto’s Law
	Good Tests have Strong Oracles
	How to evaluate the strength of test oracles?
	Mutation Analysis tests the Tests
	Mutation Analysis tests the Tests
	Mutation Report Shows Undetected Mutants
	Use Mutation Analysis While Writing Tests
	Undetected Mutants May Not Be Bugs
	Mutants are a Valid Substitute for Real Faults
	Activity: strengthening a test suite
	Review

