
CS 4530: Fundamentals of Software Engineering

Module 11: What makes a good test suite?

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain what makes a good test, and give examples and
counter examples

• Explain different things a test suite might accomplish, and
sketch how one might judge how well a test suite
accomplishes those goals

2

What makes for a good test (suite)?
• Desirable properties of test suites:

• Find bugs
• Run automatically
• Are relatively cheap to run

• Desirable properties of individual tests:
• Understandable and debuggable
• No false alarms (not “flaky”)

3

Related Terminology:
“test smells”

Good Tests are Hermetic
• Contain all information necessary to set up,

execute, and tear down environment
• Leaves no trace of its execution
• Important to reduce flakiness - test failures

4“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

describe('Create student', () => {
it('should return an ID', async () => {

const createdStudent = await client.addStudent('Avery');
expect(createdStudent.studentID).toBeGreaterThan(4);

});
})

This test is not hermetic: assumes starting ID of 4, leaves an extra Avery in the application

Good Tests Aren’t Flaky
• Flaky test failures are false alarms
• Tests that are hermetic defend against

“test order dependency” - failures due
to tests running in specific order

• Most common cause of flaky test
failures: “async wait” - tests that expect
some asynchronous action to occur
within a timeout

• Good tests avoid relying on timing

5
[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Async Wait
37%

Test Order
Dependency

17%

Concurrency
17%Resource Leak

10%

Network
9%

Time
4%

Random
3%

Floating Point
3% Unordered

Collections
1%

Good Tests Aren’t Brittle
• Brittle tests make invalid assumptions about the

specification
• Specifications often leave room for undefined

behaviors: details that are subject to change
• Brittle tests will fail unexpectedly if that undefined

behavior changes
• Example: Asserting that a specific error message is

thrown (IP1)

6

it('Throws an error if there is no layer called "objects"', async () => {
expect(() => town.initializeFromMap(testingMaps.noObjects))

.toThrowError('There is no layer called "objects"');
});

Unless the specification states that this is the error message that should be thrown, this test is brittle

Good Tests are Clear
• Test failures indicate:

• There is a bug in the system under test,
and/or

• There is a bug in the test
• Clear tests help engineers diagnose the

actual problem

7“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

it(‘remove only removes one’, () =>{
const tree = makeBST();
for (let i = 0; i < 1000; ++i) {

tree.add(i);
}
for (let j = 0; j < 1000; ++j) {

for (let i = 0; i < 1000; ++i) {
if (i != j) tree.remove(i);

}
expect(tree.contains(j)).
toBe(true);

}
}

This test is not clear: if it fails, why?

Good Tests Invoke Public APIs Only
• Tests should only invoke public methods of SUT (system

under test)
• Interact with SUT as a client of the SUT would:

• Public methods within classes
• Exported members of modules

8“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

public initializeFromMap(map: ITiledMap) {
...
this._validateInteractables();

}

private _validateInteractables() {
// Test Me!

}

It might be tempting to make _validateInteractables public and
test it directly: but it’s not how clients would call it!

What makes a Test Suite good?
• Depends on the goal of the test suite.
• Test Driven Development

• Does the SUT satisfy its specification? (“functional testing”)
• “Good” test suite exercises and validates the entire specification

• Regression Test
• Did something change since some previous version?
• Prevent bugs from (re-)entering during maintenance.
• “Good” test suite detects bugs that we introduce in code (“structural testing”)

• Acceptance Test
• Does the SUT satisfy the customer (“requirement testing”)
• “Good” test suite answers: Are we building the right system ?

9

Does the SUT satisfy its specification?
• Test behavior without regard to the implementation

(“black-box testing” or “functional testing”).
• What’s a specification?:

• A precise definition of all acceptable behaviors of a SUT
(outputs, state mutation, other effects) in all situations (state
and inputs)

• A specification may be formal (mathematical), informal (natural
language) or implicit (“I know it when I see it”).

• A test suite is an approximation to an unwritten
specification
• That’s the “T” in TDD
• Adequacy of test suite is likelihood that an implementation

passing all the tests actually fulfills the (unwritten) specification.

10

Not often seen in the wild

Building Test Suites From Specifications (TDD)
• Enumerate equivalence classes of inputs to

the SUT, and the expected behavior of that
class

• Identify boundary cases (near misses
between input classes)

• Evaluate the adequacy of the test suite by
comparing the tested behaviors with the
specified behaviors

• Sometimes referred to as “black box” testing

11

A B

If the program works for input A, it will probably work for input B

Building Test Suites From Specifications: Zip
Code Lookup
• USPS ZIP code lookup tool accepts a zip code

as input, and outputs:
• The “place names” that correspond to that

ZIP code, or
• “Invalid zip code”

• Strategy:
• Determine the input equivalence classes,

boundary conditions
• Write tests for those inputs

12

Building Test Suites From Specifications: Zip
Code Lookup
• USPS ZIP code lookup tool accepts a zip code

as input, and outputs:
• The “place names” that correspond to that

ZIP code, or
• “Invalid zip code”

13

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

Building Test Suites From Specifications: Zip
Code Lookup
• Equivalence classes:

• Not a 5 digit number
• A 5 digit numbers

• A valid ZIP code
• With one place name
• With multiple place names

• Not a valid ZIP code
• Generate at least one input from each class, plus

boundaries (e.g. 4 digit numbers, 6 digit numbers, no
numbers)

• Encode the expected output of the system for each test

14

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

Make sure the regions have the right
boundaries.
• Select “special” values of a range

• Boundary values;
• Barely legal, barely illegal inputs;
=> boundary testing

• Integer overflow a serious problem:
may be implicit
• ComAir problem due to a list

getting more than 32767 elems
• https://arstechnica.com/uncategori

zed/2004/12/4490-2/

15

https://arstechnica.com/uncategorized/2004/12/4490-2/

Building Tests from Specifications
(TDD)
• When delivering a feature, it is important to

deliver tests to ensure that the feature keeps
working this way in the future

• You may have specific domain knowledge that
future developers who touch the code do not

• Specifications are hard to interpret and check,
automated tests are easy (consider individual
project…)

• Beyoncé rule: “If you liked it you should have
put a ring test on it” (SoftEng @ Google)

16

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

Building Test Suites for Code (“Whitebox”
Testing)
• Examine the code of the system

under test
• Enumerate all public methods and

observable behaviors
• Write tests that execute those

methods and check those
behaviors

• A “good” test suite executes and
checks all of the possible
behaviors of our code

17

function getPlaceNames(input: string): string[] {
try{
if(input.length == 5) {
const parsed = parseInt(input);
if (isValidZipcode(parsed)) {
const primaryPlaceName = getPrimaryPlaceName(parsed);
if(hasOtherPlaceNames(parsed)){
return

[primaryPlaceName].concat(otherPlaceNames(parsed))
}
return [primaryPlaceName];

}
}
throw new Error("Invalid zip code")

}catch(err){
throw new Error("Invalid zip code")

}
}

Do our tests execute all of the code?
• Idea: Quantitative measure the portion of code executed

by test suite. Write new test inputs to execute more code.
• This is the question of test coverage, examples:

• Statement or Block coverage
• Branch coverage
• Path coverage

• If some (statement/branch/path) is not covered, it is
definitely not tested

• If some (statement/branch path) is covered, it might be
tested

18

Statement Coverage
• Each line (or part of) the code should be executed at

least once in the test suite
• There are good tools for measuring how many lines

were executed or not executed
• Jest -- coverage

• Adequacy criterion: each statement must be executed at
least once

Coverage: # executed statements
statements

19

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

63

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

72

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

91

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

10
0

0

25

50

75

100

Coverage

✔

Branch Coverage
• Adequacy criterion: each branch in the CFG must be

executed at least once
coverage: # executed branches

branches

• Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

• Most widely used criterion in industry

24

Branch Coverage Measures
• Coverage is computed automatically while the tests

execute
• jest --coverage

• Does it all for you

25

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

Every Branch Executed != Every Behavior
Executed
• In this example, all branches are

covered by the test
• However: magic will crash under

certain inputs

26

function magic(x: number, y: number) {
let z = 0;
if (x !== 0) {

z = x + 10;
} else {

z = 0;
}
if (y > 0) {

return y / z;
} else {

return x;
}

}
test(“100% branch coverage", () => {

expect(magic(1, 22)).toBe(2); //T1
expect(magic(0, -10)).toBe(0); //T2

});

✅ T1

✅ T2

✅ T1

✅ T2

Path Coverage is Exhaustive
• Sometimes a fault is only

manifest on a particular path
• E.g., choosing the left branch and

then choosing the right branch.
(dashed blue path)

• But the number of paths can be
infinite
• E.g., if there is a loop.

• There are ways to bound the
number of paths to cover.

27

100% Coverage may be Impossible
• Path coverage (even without loops)

• Dependent conditions: if (x) A; B; if (x) C;

• Branch coverage
• Dead Branches e.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• (x > 0) test will always succeed

• Statement coverage
• Dead code (e.g., defensive programming)

28

Pareto’s Law

29

Approximately 80% of defects
come from 20% of modules

Good Tests have Strong Oracles
• Test oracle defines criteria for when test should fail
• Strong oracles check all observable behaviors and

side-effects
• How to determine an oracle?

• Function returns the exact “right” answer
• Function returns an acceptable answer
• Returns the same value as last time
• Function returns without crashing
• Function crashes (as expected)

30

How to evaluate the strength of test oracles?
• Goal: “A good test suite finds all of the bugs”
• Problem: How to know the bugs that we could

make?
• Strawman - “Seeded Faults”:

• Create N variations of the codebase, each with a
single manually-written defect

• Evaluate the number of defects detected by test
suite

• Test suite is “good” if it finds all of the bugs you can
think of

31

Mutation Analysis tests the Tests
• Idea: What if many (real) bugs could be represented by a single, one-

line “mutation” to the program?

32

public contains(location: PlayerLocation): boolean {
return (

location.x + PLAYER_SPRITE_WIDTH / 2 > this._x &&
location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height

);
}

Correct code for ‘Contains” in IP1

public contains(location: PlayerLocation): boolean {
return (

location.x + PLAYER_SPRITE_WIDTH / 2 < this._x &&
location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height

);
}

Mutated (and buggy) code for ‘Contains” in IP1

Mutation Analysis tests the Tests
• Automatically mutates SUT to create mutants, each a single change to

the code
• Runs each test on each mutant, until finding that a mutant is detected

by a test
• Can be a time-consuming process to run, but fully automated
• State-of-the-art mutation analysis tools:

• Pit (JVM)
• Stryker (JS/TS, C#, Scala)

33

Mutation Report Shows Undetected Mutants
• Mutants “detected” are bugs that are found
• Mutants “undetected” might be bugs, or could be

equivalent to original program (requires a human to
tell)

34

Use Mutation Analysis While Writing Tests
• When you feel “done” writing tests, run a mutation

analysis
• Inspect undetected mutants, and try to strengthen

tests to detect those mutants

35

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs
• Unfortunately, we can not automatically tell if an

undetected mutant is a bug or not

36

This mutant is equivalent to the original program: Even without
this check for undefined, an error is still thrown when the
undefined layer is dereferenced on the following line

This mutant is equivalent to the original program: Even though
the error message changed, the specification doesn’t indicate
what error message should be thrown.

Mutants are a Valid Substitute for Real
Faults
• Do mutants really represent real bugs?
• Researchers have studied the question of

whether a test suite that finds more
mutants also finds more real faults

• Conclusion: For the 357 real faults studied,
yes

• This work has been replicated in many other
contexts, including with real faults from
student code

37

Activity: strengthening a test suite
• Enhance the test suite of the transcript server to

improve line coverage and mutation coverage
• Download on Module 11 webpage

38

Review
• Now that you've studied this lesson, you should be

able to:
• Explain some properties of good tests.
• Explain different things a test suite might accomplish, and

sketch how one might judge how well a test suite
accomplishes those goals

39

	CS 4530: Fundamentals of Software Engineering��Module 11: What makes a good test suite?
	Learning Objectives for this Lesson
	What makes for a good test (suite)?
	Good Tests are Hermetic
	Good Tests Aren’t Flaky
	Good Tests Aren’t Brittle
	Good Tests are Clear
	Good Tests Invoke Public APIs Only
	What makes a Test Suite good?
	Does the SUT satisfy its specification?
	Building Test Suites From Specifications (TDD)
	Building Test Suites From Specifications: Zip Code Lookup
	Building Test Suites From Specifications: Zip Code Lookup
	Building Test Suites From Specifications: Zip Code Lookup
	Make sure the regions have the right boundaries.
	Building Tests from Specifications (TDD)
	Building Test Suites for Code (“Whitebox” Testing)
	Do our tests execute all of the code?
	Statement Coverage
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Branch Coverage
	Branch Coverage Measures
	Every Branch Executed != Every Behavior Executed
	Path Coverage is Exhaustive
	100% Coverage may be Impossible
	Pareto’s Law
	Good Tests have Strong Oracles
	How to evaluate the strength of test oracles?
	Mutation Analysis tests the Tests
	Mutation Analysis tests the Tests
	Mutation Report Shows Undetected Mutants
	Use Mutation Analysis While Writing Tests
	Undetected Mutants May Not Be Bugs
	Mutants are a Valid Substitute for Real Faults
	Activity: strengthening a test suite
	Review

